It's Easy to Enrol

Select a Learning Method

 

£325.00 Payment plans available.

Enable Javascript to automatically update prices.

Courses can be started at any time from anywhere in the world!

Permaculture I (Permaculture Foundations)

Course CodeVSS104
Fee CodeS1
Duration (approx)100 hours
QualificationStatement of Attainment

 

Do you wish you knew more about permaculture, but don't have the time to study? Well now you do!
  • Learn more about the concepts of permaculture.
  • Understand the theory and ethics of permaculture, before putting it into practice.
  • Understand soil management and cultivation.
  • Learn more about the climate and water cycle.
  • Understand forest systems and agricultural systems.
  • Study this excellent course in your own home with support from our highly experienced and qualified permaculture tutors.
  • Study while you continue working.
  • Increase your knowledge of the rapidly growing field of permaculture.
  • Take further modules with ACS and gain a Permaculture Design Certificate (more information below).
  • ACS is a member of the Permaculture Association (UK) and The Alternative Technology Association (Australia)
ACS student comment:
"This course was a valuable learning experience.  My workplace is slowly changing to a 'greener' approach to managing every aspect of their parks, flowerbeds & trees.  I'm trying to learn and find new ways to go 'greener' in the landscape as are many other individuals working in municipalities in Ontario.  Your course provided me with a basic foundation to start and I'm looking forward to the rest of the Permaculture course.  Feedback was very specific and easy to follow." Bernice Radtke, Canada - Permaculture I course.
 

Lesson Structure

There are 5 lessons in this course:

  1. Concepts
    • The basic theory and ethics of Permaculture
  2. The Environment
    • Ecosystems, the web of life and interactions between living organisms
  3. Soils
    • Soil management, fertilisers, nitrogen, cultivation, gas and nutrient cycles
  4. Climate and Water
    • The hydrological cycle, infiltration, microclimates, the Greenhouse
    • Effect, water and plants
  5. Forest Systems
    • Biomass, how natural systems relate to agricultural systems

Each lesson culminates in an assignment which is submitted to the school, marked by the school's tutors and returned to you with any relevant suggestions, comments, and if necessary, extra reading.

Aims

  • Discuss the nature and scope of Permaculture.
  • Apply an understanding of environmental systems to considerations given to how a Permaculture system is designed.
  • Describe soils and the impact their characteristics have upon natural and man made environments.
  • Explain the application of this knowledge to Permaculture.
  • Describe characteristics of climate and water, and the impact their characteristics have upon natural and man made environments.
  • Explain the application of this knowledge to Permaculture.
  • Describe forest systems and their relevance to Permaculture design.

What You Will Do

  • Develop a good understanding of the scientific system of naming plants.
  • Discuss some of the aspects which play a part in permaculture.
  • Describe how permaculture is different to other forms of horticulture and agriculture.
  • Visit an outdoor environment area determine what relationships the living and non‑living things might have with each other.
  • Explain how a permaculture system operates. Considering: -Relative location -Multiple functions-Multiple elements-Elevational planning -Biological resources-Energy recycling -
  • Natural succession -Maximise edges-Diversity.
  • Determine some of the characteristics of soil samples collected by you.
  • Explain contour maps and how this information can be used to estimate potential effects on plant growth.
  • Explain the relationship between soils and plant growth.
  • Research different ecosystems such as arid deserts, savannas, mangroves, etc.
  • Explain weather patterns in your local area. Determine why this knowledge may be important to the permaculture practitionist.
  • Explain water within an ecosystem or permaculture garden and its application.
  • Describing the microclimate of arid classification.
  • Describe the differences between the three main types of climate zones such as Tropical, Temperate and Desert and briefly give your views on what major differences would need to be taken in establishing a permaculture system in each climate zone, compared with the other two.
  • Consider the impact of plant communities on each other and to the rest of the ecosystem.
  • Determine the effects of light, rainfall, wind, leaf litter, etc, on the growth of the plants you observed.
  • Explain the importance of trees in a Permaculture system.


WOULD YOU LIKE TO ACHIEVE THE PERMACULTURE DESIGN CERTIFICATE?

IF SO, THERE ARE THREE PATHWAYS TO ACHIEVE THE PDC WITH ACS DISTANCE EDUCATION BY COMPLETING EITHER –

PATHWAY 1

PERMACULTURE I

PERMACULTURE II

PERMACULTURE III

PERMACULTURE IV

PATHWAY 2

PERMACULTURE SYSTEMS COURSE

PATHWAY 3

CERTIFICATE IN HORTICULTURE (PERMACULTURE)

ACS Distance Education is a member of the Permaculture Association (UK) and The Alternative Technology Association (Australia)

 
 

WHY PERMACULTURE?

There is one very good reason -if we don't manage our land sustain-ably; it degrades, and as degradation continues, small problems enlarge until eventually the land becomes unproductive.

Just consider what can happen if we let it:

  • Deforestation: this is caused by land clearing for agriculture, quarrying, housing construction materials, for fuel and also furniture creating a loss of habitat for animal life and a decrease in species diversity, both fauna and flora. Deforestation creates bare land exposed to wind and rain which leaves the area open to erosion as the top (organic) layers of soil may be washed away.  Deforestation contributes to climate change - when land is cleared, stored carbon is released into the atmosphere as (mainly) carbon dioxide.
  • Desertification: the degradation of drylands into deserts (in arid, semi-arid and dry sub-humid areas) through human actions such as intensive agriculture i.e. monoculture, overgrazing, excessive land tillage, removal of vegetation, irrigation causing salinity, depleting aquifers through over use of groundwater for agricultural purposes and using already fragile or marginal land for agriculture.
  • Waterlogging: the rising of the water-table close to the surface of the soil (or in the case of ponding above the soil surface) through bad irrigation management practices, thereby lowering land productivity. Waterlogging can also be caused by floods or prolonged inundation of low lying land.  When soils are waterlogged there is also an increase in the release of greenhouse gas nitrous oxide (N2O).
  • Loss of nutrients: nutrient depletion in soils is common on irrigated, eroded and intensively farmed lands. Nutrients can be lost through run-off, leaching and overuse of land and bad management. Nitrogen is also lost from soils through the natural process of denitrification.
  • Erosion: the loss of soils through wind erosion and water erosion, sometimes as a result of excessive tillage or incorrect land management, especially of sloping lands, resulting in soil structural decline - but also as a natural occurrence.
  • Salinization: the increase of soluble salts (calcium, magnesium) in the soil - both through naturally occurring processes and through agricultural activities (e.g. over-irrigation). Salinization can also occur in coastal regions through the encroachment of sea-water into coastal lands, due to the over-use of groundwater from coastal water sources (rivers, lakes etc.).
  • Acidification: soil acidification is naturally occurring (especially in areas of high rainfall) and is influenced and varied according to the character of the landscape, the minerals present in clay, the soil texture and its buffering capacity i.e. the soil’s ability to stop changes in pH and nutrients by absorption (drawing them up) and to release them (cation exchange capacity).
    Although a natural process, soil acidification is increased through agricultural activity.  Acidification changes the chemistry of the soil which can result in restriction of available nutrients (i.e. they are ‘locked-up’ in low pH soils e.g. phosphorus and molybdenum);
    Soil acidity can also:
  1. Increase vulnerability to soil structural decline.
  2. Increase the availability of toxic elements (e.g. aluminium and manganese).
  3. Influence soil biological functions (e.g. nitrogen fixation); Rhizobia bacteria fix nitrogen in legumes and although they prefer slightly acid soil environment in highly acidic soils they cannot function; earthworms and other soil microorganisms also die in highly acidic soils.
  4. Decrease crop production as pH falls below pH5; decrease in potential crop diversity (some crops won’t grow in acid soils and adverse effect on plant health (slow or lack of root development into salinized sub-soils).
  • Soil structural decline: the soil’s physical properties i.e. its texture (sand, clay, silt, loam etc.) and structure (the aggregation of soil particles i.e. the way soils bind together and the pore spaces between the aggregates), relate directly to water infiltration, permeability (both air and water), and the water-holding capacity of the soil. Land use practices such as excessive cultivation, overstocking, use of heavy machinery, poor soil tillage methods, etc., can all result in structural degradation; they can compromise the stability, porosity and infiltration characteristics of the soil making them compacted, cloddy or turning the soil into a fine powder and lower organic matter levels. This can trigger soil erosion through wind and water, run-off (through compaction), soil crusting and lower crop yields and is often seen on areas where dryland pastured areas have been turned into irrigated cropping land. Salinity, sodic soil and the use of saline water may be contributing factors.
  • Contamination: Throughout the world many areas including industrial sites, home-sites, farms, adjacent waterways and the natural environment are degraded due to chemical residues: pesticides, builders’ rubbish, landfill, industrial waste, over use of fertilisers, industrial accidents or a natural disaster (sewage contamination and chemical leaks);  any of these may contribute to contamination. It may be that management practices have changed drainage patterns, or increased the amount of water or waste moving onto or across a site. Or it may be as a result of poor practices in the past. Chemical soil contaminants include arsenic, benzene, paint containing lead, fuel such as petroleum and aviation fuel, heavy metals such as cadmium and chromium found in batteries, pesticides and herbicides etc. Other contaminants include fertiliser run-off, animal faeces in waterways etc.
  • Urbanisation: creates a loss of natural environments and agricultural lands. Rural areas close to large cities are often carved up for urban expansion. Land degradation in some poorer countries is the result of mass migration (of impoverished people) from rural to urban areas; the need for housing creating huge slum areas that are often devoid of sanitation and water management. Urbanisation also creates a loss of habitat for animal life and a decrease in species diversity, both fauna and flora.
  • Overpopulation: this has an indirect effect on land degradation as natural areas are cleared (deforestation) to meet the increased need for crop growing to support increased populations. This can be the result of urbanisation (as above) but also as populations grow in existing urban or rural areas; increased population increases the need for more food, which in turn increase the need for more agricultural land and groundwater to support crop growing. The land that is used to support increased populations is also prone to over-cropping and over-irrigation and excessive tillage, resulting in loss of soil structure, soil fertility and on marginal and drylands it also contributes to soil salinity.  
  • Decreased species diversity and habitat loss: a result (not usually a cause) of land degradation. In some cases, species may become fragmented into smaller populations rather than entirely lost – some scientific research suggests that fragmentation in itself does not contribute to overall species loss and can also be a form of species protection; others suggest that fragmentation may directly affect species genetic diversity. Loss of species (plants, animals, insects, soil life) can also cause imbalance that can contribute to soil infertility, pest, weed and disease plagues.
  • Weed/pest invasion: when lands are clear-felled or soils are disturbed, or cleared land has an excess of nutrients from prior cropping, the first species to colonise an area will be those that are the genetically strongest; this is most commonly weed species (they typically produce large numbers of seeds aiding rapid spread). Weed invasions also compromise the habitat of native species (both flora and fauna) as they displace the native plant species (and compete with them for nutrients, moisture and sunlight) and threaten the survival of animal and insect populations by changing the natural balance of local ecological communities. The increased and repeated use of pesticides and herbicides can also create resistance in pest species.

 



Meet some of our academics

Bob JamesHorticulturalist, Agriculturalist, Environmental consultant, Businessman and Professional Writer. Over 40 years in industry, Bob has held a wide variety of senior positions in both government and private enterprise. Bob has a Dip. Animal Husb, B.App.Sc., Grad.Dip.Mgt, PDC
Christine ToddUniversity lecturer, businesswoman, photographer, consultant and sustainability expert; with over 40 years industry experience B.A., M.Plan.Prac., M.A.(Social). An expert in planning, with years of practical experience in permaculture.
Diana Cole B.A. (Hons), Dip. Horticulture, BTEC Dip. Garden Design, Diploma Chartered Institute of Personnel & Development, PTLLS (Preparing to Teach in the Life Long Learning Sector), P.D.C. In addition to the qualifications listed above, Diana holds City & Guild construction qualifications and an NPTC pesticide spraying licence (PA1/PA6). Diana runs her own landscape gardening business (Arbella Gardens). Active in many organisations including the British Trust for Conservation Volunteers.
Maggi BrownMaggi is regarded as an expert in organic growing throughout the UK, having worked for two decades as Education Officer at the world renowned Henry Doubleday Research Association. She has been active in education, environmental management and horticulture across the UK for more than three decades. Some of Maggi's qualifications include RHS Cert. Hort. Cert. Ed. Member RHS Life Member Garden Organic (HDRA) .


Check out our eBooks

Food PreservingIdeal for students of nutrition, self sufficiency or horticulture, the food preservation ebook is a great introduction to preserving food.
Growing and Knowing NutsDiscover the many different varieties of nuts that you many not have ever heard of. Learn unique ways of using nuts and cooking with nuts.
Fruit, Vegetables and HerbsHome grown produce somehow has a special quality. Some say it tastes better, others believe it is just healthier. And there is no doubt it is cheaper! Watching plants grow from seed to harvest and knowing that the armful of vegies and herbs you have just gathered for the evening meal will be on the table within an hour or two of harvest, can be an exciting and satisfying experience.
Growing & Using Capsicums & ChilliesGet to know more about Capsicums and Chillies with brightly illustrated ebook- Growing and Using Capsicums and Chillies. With 71 pages of wonderful facts about capsicums and chillies, this ebook will have you growing, knowing and cooking your own delicious home grown capsicums.