It's Easy to Enrol

Select a Learning Method


£355.00 Payment plans available.

Courses can be started at any time from anywhere in the world!
Please note that if you choose the 'e-learning' (course on USB) method, be aware that due to current covid-19 restrictions there are some countries we can not send USB sticks to.

We recommend you choose the online learning method as all online courses provide access to download course notes to access offline or print. If you do require your course to be supplied on USB stick then please contact us first to check availability for your country.

Plant Breeding

Course CodeBHT236
Fee CodeS3
Duration (approx)100 hours
QualificationStatement of Attainment

Gain Skills for the Nursery and Plant Breeding Industry

  • Learn the principles and practices of plant breeding.
  • Indulge a passion, start a business, work in plant development
  • Expand your career possibilities in the nursery and broader horticulture industry

Plant breeding is a bigger industry than most people realise. In some places, earnings from plant breeding rights can equal or exceed earnings from actually producing plants. Today's nurseryman needs to understand plant breeding and selection; and to this end, this course is a very valuable and unique course for anyone working in the modern industry.

There are 7 lessons in this module as follows:

1. The Scope and Nature of the Plant Breeding Industry

  • What is Plant Breeding
  • Scope of the Modern Industry
  • Sources of Genetic Material
  • Germplasm Preservation
  • Botanic Gardens, Plant Breeding Organisations, Research Bodies

2. Introduction to Genetics

  • Review of Plant Genetics Linkage and Crossing Over
  • DNA
  • Homologous Chromosomes
  • Cell Biology -cell components, cell wall, nucleus
  • Protein Synthesis
  • Plant Anatomy
  • Plant Genetics, Mendel's Principles and Experiment
  • Genetic Terminology
  • Gene Linkages

3. Gamete Production, Pollination and Fertilisation in Plants

  • Phases of Plant Reproduction
  • Gamete Production
  • Gene Mutation
  • Sources of Genetic Variation: Polyploidy, Bud Sports and Chimeras
  • Male Sterility
  • Effect of Environment
  • Use of Pollination Biology in Plant Breeding: Pollination Process, Pollination Requirements, Cross Pollination, Fertilisation, Male/Female Recognition, Overcoming incompatibility, Post Fertilisation, Pollen Selection, Floral Introduction etc.
  • Mitosis and Meiosis
  • Genes
  • Sexual Structures in Plants: Flowers, Fruit, Seed

4. Mono Hybrid and Dihybrid Inheritance in Plants

  • Mono hybrid Crosses
  • Dihybrid Crosses
  • Gene Linkages
  • Crossing Over
  • Recombination
  • Quantitative Traits
  • Terminology

5. Systematic Botany and Floral Structures

  • Systematic Botany
  • Plant Morphology
  • Type Specimens
  • Floral Diagrams
  • International Botanical Code
  • Binomial System; Genus and species
  • Hybrids, Varieties, Cultivars
  • Name Changes
  • Nomenclature of hybrids
  • Using Botanical Keys

6. Practical Plant Breeding Techniques

  • Plant Breeding Programs
  • Breeding Self Pollinated Crops
  • Pure Line Breeding
  • Mass Selection
  • Pedigree Breeding
  • Bulk Population Breeding
  • Breeding Cross Pollinated Crops
  • Single Plant Selection
  • Mass Selection
  • Progeny Selection
  • Line Breeding
  • Recurrent Selection
  • Backcross Breeding
  • Induced Polyploidy
  • Hybrid Seed Production
  • Dormancy Factors Affecting Germination (eg. hard seeds, impermeability to water, Chemical inhibitors, Undeveloped embryos, etc)

7. Current Developments in Plant Genetics

  • Plant Biotechnology
  • Genetic Engineering
  • DNA Markers
  • Somatic Hybridisation
  • Micropropagation
  • Plant Breeders Rights
  • Trade Marks, Patents


Comment Received from a Student  " I have never found the staff at any other learning institution as supportive as the staff at ACS. This gives one a lot of peace of mind and confidence to go on - at every squeak from my side, you guys have always been there, immediately to sort me out. The feedback on my lessons has always been really good and meaningful and an important source of my learning. Thanks!..."


  • Describe the commercial and scientific nature of the modern plant breeding industry, on a global basis
  • Describe the structure and function of genetic material
  • Describe gamete production in plants.
  • Explain the results of mono hybrid and dihybrid inheritance in plants.
  • Investigate the role of systematic botany in horticulture.
  • Explain a variety of different plant breeding techniques
  • Review current developments in plant breeding.

Plant Breeding Tips

The essential aspects of most breeding programs are:

  1. Selection of genetically variable individuals or families within a base population.
  2. Using the selected material to create new populations for use either as potential commercial varieties or as the basis for a new cycle of selection.

Before starting a breeding program, it is essential to know the plant’s pollination requirements – whether it is self or cross pollinated – and how it behaves when it is inbred or crossbred.

The genetic effect of continued self fertilisation in self-pollinated plants is to reveal the dominant and recessive genes. As Mendel’s experiments show, heterozygosity is reduced by one half in each generation, so that after six or seven generations of selfing, a population will consist almost entirely of equal numbers of homozygotes. In this way, selection of characters by continued selfing results in pure lines – these plants are said to be ‘pure breeding’ or breeding ‘true to type’.

The following methods are used to breed self-pollinated crops.

Pure-line Breeding
In pure-line breeding (also known as ‘single plant selection’) the new variety is made of the progeny of a single pure line. It involves three steps:
1. Selecting a large number of superior individuals from a genetically variable population.
2. Raising the self progeny of each of these over several years, preferably in different environments. Unsuitable lines are eliminated in each generation. When the breeder can no longer select superior lines by observation only, the third step is commenced.
3. Replicating the trials to compare the remaining selections. This is done over several seasons (at least three years) to compare them with each other and with existing commercial varieties.

Mass Selection
In mass selection the progeny of many pure lines are used to form the new variety. Unlike pure-line selection where the derived type consists of a single pure line, in mass selection the majority of selected lines are likely to be retained.

It is not as rigorous as pure-line breeding – obviously inferior plants are destroyed before flowering but overall many lines are kept and contribute to the genetic base. This gives the advantage of retaining the best features of an original variety and avoids the extensive testing required in step 3 of pure-line breeding.

Pedigree Breeding
This is the most widely used method of breeding in self-pollinated plants. Superior types are selected in successive segregating generations (as in pure-line breeding) and a record is kept of all parent-progeny relationships. It starts with the crossing of two varieties which complement each other with respect to one or more desirable characters. In the F2 generation a single plant selection is made of the individuals the breeder thinks will produce the best progeny. In the F3 and F4 generations, many loci become homozygous and family characteristics begin to appear. By the F5 and F6 generations, most families are homozygous at most loci; hence selection with families is no longer very effective, only between them.

Its main advantage is that the plant breeder is able to exercise his/her skill in selecting plants to a greater degree than other self-pollinating breeding methods. A disadvantage is the limitation it has on the amount of material one breeder can handle.

Meet some of our academics

Marie BeermanMarie has over 7 years in horticulture and education in both Australia and Germany. Marie has been a co author of several ebooks in recent years, including "Roses" and "Climbing Plants". Marie's qualifications include B. Sc., M.Hort. Dip. Bus. Cert. Ldscp.
Diana Cole B.A. (Hons), Dip. Horticulture, BTEC Dip. Garden Design, Diploma Chartered Institute of Personnel & Development, PTLLS (Preparing to Teach in the Life Long Learning Sector), P.D.C. In addition to the qualifications listed above, Diana holds City & Guild construction qualifications and an NPTC pesticide spraying licence (PA1/PA6). Diana runs her own landscape gardening business (Arbella Gardens). Active in many organisations including the British Trust for Conservation Volunteers.
Yvonne SharpeRHS Cert.Hort, Dip.Hort, M.Hort, Cert.Ed., Dip.Mgt. Over 30 years experience in business, education, management and horticulture. Former department head at a UK government vocational college. Yvonne has traveled widely within and beyond Europe, and has worked in many areas of horticulture from garden centres to horticultural therapy. She has served on industry committees and been actively involved with amateur garden clubs for decades.

Check out our eBooks

Growing & Knowing Flowering BulbsWith 187 pages the Growing and Knowing Flowering Bulbs ebook is a great foundation on growing bulbs and includes a colour glossary of flowering bulbs. This ebook is a great read for students, professional horticulturalists and gardeners.
Growing & Knowing AnnualsGet to know your Annual plants better. Learn to identify and grow Annuals with Growing and Knowing Annuals. This ebook has 141 pages and stunning colour pictures and is ideal for home gardeners, students, professional horticulturalists and nurserymen.
Organic GardeningCreate a healthy, well-balanced garden. Attract abundant beneficial insects to pollinate your plants. Have healthy, fertile, organic soils teeming with life. Use this book as a guide to establish lush gardens laden with fruit, vegetables, herbs and ornamentals - without the use of chemicals. The ebook covers: soils and nutrition, pest and disease, natural weed control, conservation and recycling. 179 pages, 170 colour photos
Climbing PlantsDiscover which climbers to use to hide unsightly walls; how to grow green, flowering boundaries for privacy; and which climbers are the best for growing on the roofs of pergolas, arches and arbours. Chapters cover how plants climb, how to use them, and landscaping. The bulk of the book, however, is given over to an encyclopaedia covering 54 genera and hundreds of species, followed by two separate and more in-depth chapters: one on Bougainvillea and the other Clematis.